7,595 research outputs found

    Studies of structural, magnetic, electrical and photoconducting properties of Bi1x_{1-x}Cax_{x}MnO3_{3} epitaxial thin films

    Get PDF
    The dynamics of the charge ordered (CO) state under non-equilibrium conditions created by strong dc-electric field (~106 V/cm) and photo-illumination with short (~ 6 ns) laser pulses is investigated in Bi1-xCaxMnO3 (x > 0.5) epitaxial films. A pulsed laser deposition method was used to synthesize films on (100) LaAlO3 (LAO) and (100) SrTiO3 (STO) substrates. The crystallographic structure, temperature dependence of electrical resistivity and magnetization of the samples of different composition prepared under different oxygen partial pressure (pO2) and deposition temperature (TD) are studied. For the x = 0.6 sample grown on LAO, a clear signature of charge ordering at ~275 K is seen in the magnetization and at ~ 260 K in the resistivity data. The same sample grown on STO revealed a complex behavior, which entails charge ordering at ~300 K, a Neel order at ~150 K and finally a weak ferromagnetic phase below 50 K. A strong correlation between charge ordering temperature (TCO) and the c-axis lattice parameter (c) of the type (dTCO/dc ~-350 K/A) imerges from measurements on films deposited under different growth conditions. Since the out of plane lattice parameter (c) increases with in plane compressive strain, this effect directly show a compressive strain induced suppression of the TCO. The current (I)- voltage (V) characteristics of the samples at T < TCO show hysteresis due to a compound effect of Joule heating and collapse of the CO state. Transient changes in conductivity of lifetime ranging from nano to microseconds are seen at T < TCO on illumination with pulsed UV (355 nm) radiation. These observations are explained on the basis of the topological and electronic changes in the charge ordered phase.Comment: 19 figures, 34 page

    A probabilistic approach to model-based adaptive control for damping of interarea oscillations

    No full text
    Published versio

    Spectral Representation of Thermal OTO Correlators

    Full text link
    We study the spectral representation of finite temperature, out of time ordered (OTO) correlators on the multi-time-fold generalised Schwinger-Keldysh contour. We write the contour-ordered correlators as a sum over time-order permutations acting on a funda- mental array of Wightman correlators. We decompose this Wightman array in a basis of column vectors, which provide a natural generalisation of the familiar retarded-advanced basis in the finite temperature Schwinger-Keldysh formalism. The coefficients of this de- composition take the form of generalised spectral functions, which are Fourier transforms of nested and double commutators. Our construction extends a variety of classical results on spectral functions in the SK formalism at finite temperature to the OTO case.Comment: 19 pages+appendices, references adde

    Complementarity of perturbations driving insulator-to-metal transition in a charge ordered manganite

    Full text link
    Modulation of charge carrier dynamics and hence electrical conductivity of solids by photoexcitation has been a rich field of research with numerous applications. Similarly, electric and magnetic field assisted enhancement of conductivity are of fundamental importance and technological use. Hole doped manganites of the type (A1x_{1-x}Bx)_{x})MnO3_{3}, where A and B are rare and alkaline earth metals respectively have the distinction of showing all three effects. Here we establish the complementarity of the electric, magnetic and photon fields in driving an insulator-metal transition in epitaxial thin films of La0.175_{0.175}Pr0.45_{0.45}Ca0.375_{0.375}MnO3_{3} whose electrical ground state is insulating. Both pulsed and CW lasers cause a giant photon flux dependent enhancement of conductivity. It is further observed that electric and magnetic fields trigger the persistent enhancement of conductivity whose magnitude can be accentuated by application of these fields in parallel.Comment: 17 pages 6 figure

    Transverse energy distributions and J/ψJ/\psi production in Pb+Pb collisions

    Get PDF
    We have analyzed the latest NA50 data on transverse energy distributions and J/ψJ/\psi suppression in Pb+Pb collisions. The transverse energy distribution was analysed in the geometric model of AA collisions. In the geometric model, fluctuations in the number of NN collisions at fixed impact parameter are taken into account. Analysis suggests that in Pb+Pb collisions, individual NN collisions produces less , than in other AA collisions. The nucleons are more transparent in Pb+Pb collisions. The transverse energy dependence of the J/ψJ/\psi suppression was obtained following the model of Blaizot et al, where charmonium suppression is assumed to be 100% effective above a threshold density. With fluctuations in number of NN collisions taken into account, good fit to the data is obtained, with a single parameter, the threshold density.Comment: Revised version with better E_T fit. 4 pages, 2 figure

    A Session based Multiple Image Hiding Technique using DWT and DCT

    Full text link
    This work proposes Steganographic technique for hiding multiple images in a color image based on DWT and DCT. The cover image is decomposed into three separate color planes namely R, G and B. Individual planes are decomposed into subbands using DWT. DCT is applied in HH component of each plane. Secret images are dispersed among the selected DCT coefficients using a pseudo random sequence and a Session key. Secret images are extracted using the session key and the size of the images from the planer decomposed stego image. In this approach the stego image generated is of acceptable level of imperceptibility and distortion compared to the cover image and the overall security is high.Comment: 4 pages,16 figures, "Published with International Journal of Computer Applications (IJCA)
    corecore